Выбираем преобразователь частоты. Преобразователь частоты. Выбор и расчет преобразователя частоты для электродвигателя Какой частотный преобразователь лучше

Подписаться
Вступай в сообщество «kalipsosanteh.ru»!
ВКонтакте:

Одним из главных недостатков асинхронных двигателей является сложность регулировки частоты вращения. Изменять её можно тремя способами: изменением количества пар полюсов, изменением скольжения и изменением частоты. В последнее время для регулирования скорости вращения асинхронного короткозамкнутого двигателя частоту тока меняют с помощью частотных преобразователей для электродвигателя.

В последнее время на производстве стали широко использоваться высокочастотники, у многих неопытных новичков, встречающих их на практике, часто возникает вопрос, что такое частотный преобразователь и для чего он нужен. Достоинствами частотного привода для электродвигателя являются:

  • снижение электропотребления двигателем;
  • улучшение показателей работы: плавность запуска и регулировки скорости вращения;
  • исключение возможных перегрузок.

Плавность пуска обеспечивается преобразователем благодаря снижению с его помощью пускового тока, который без частотника превышает номинальный ток в 5–7 раз.

Основными частями в устройстве преобразователя являются инвертор и конденсаторы. Инвертор обычно выполнен из диодных мостов. Его задача - выпрямить напряжение на входе, которое может принимать значение 220В или 380В в зависимости от количества фаз, но сохранить при этом пульсации. Затем конденсаторы выпрямленное напряжение сглаживают и фильтруют.

Потом постоянный ток отправляется на микросхемы и выходные мостовые IGBT-ключи. Обычно мостовой IGBT-ключ - это шесть транзисторов, соединённых по мостовой схеме. Защиту от пробоя напряжения обратной полярности осуществляют диоды. В более ранних схемах вместо транзисторов были использованы тиристоры, значительными недостатками которых были некоторая замедленность в работе и помехи.

Благодаря этим устройствам возникает широтно-импульсная последовательность с необходимой частотой. На выходе частотника импульсы напряжения имеют прямоугольный вид. А после того как они проходят через обмотку статора, вследствие её индуктивности, принимают синусоидальный вид.

Чтобы понять, зачем нужен инвертор, необходимо уяснить, что ток бывает постоянным и переменным. И если преобразователи частоты используются при работе с переменным током, то для управления электромотором постоянного тока необходим электропривод постоянного тока. Он называется инвертором и его назначением в схеме является контроль тока возбуждения. И он также независимо от изменений нагрузки может поддерживать скорость вращения ротора в требуемых пределах и осуществлять его торможение.

При выборе частотника наиболее низкая стоимость определена набором минимальных функций. Рост стоимости пропорционален их увеличению.

Первоначально преобразователи классифицируют по мощности . Не менее важными параметрами являются перегрузочная способность и тип исполнения.

Мощность частотника должна быть не меньше максимальной мощности установки. Для оперативного ремонта или замены в случае поломки частотного привода для электромотора желательно, чтобы сервис-центр был расположен в непосредственной близости.

При выборе преобразователя немаловажным фактором является его напряжение. Если подобрать частотник определённого напряжения, а в сети оно окажется более низким, то он будет отключаться. Если же напряжение сети будет длительно допускать допустимое напряжение, то это приведёт к его повреждению и невозможной дальнейшей работе. С учётом этих рисков нужно выбирать частотники с большим интервалом допустимого напряжения.

Существует два типа управления преобразователей: векторное и скалярное.

При скалярном управлении удерживается постоянство между значением напряжения и частоты на выходе. Это наиболее простой тип частотников, и, вследствие этого, более дешёвый.

При векторном управлении из-за снижения статической ошибки управление осуществляется более точно. Но и стоимость асинхронного преобразователя частоты с этим видом управления более высока в сравнении со скалярным управлением.

Зона регулирования частоты тока должна быть в необходимых пределах. Для диапазонов с регулировкой по частоте более, нежели в 10 раз лучше выбрать векторное управление.

Количество вводов должно быть оптимальным, потому как при слишком большой их численности цена прибора для изменения частоты будет неоправданно завышена, а также могут возникнуть некоторые сложности при его настройке.

Необходимо учесть перегрузочные способности частотника по току и мощности. Ток частотника должен быть чуть больше, нежели номинальный ток двигателя. В случае возникновения ударных нагрузок необходим запас по пиковому току, который должен быть не менее 10% от ударного тока.

Расчёт частотника для электродвигателя

Для того чтобы преобразователь частоты имел возможность работать надёжно и соблюдать заданные значения, необходимо рассчитать его основные параметры:

  • тип исполнения;
  • мощность.

Расчёт тока преобразователя производится по формуле:

где Р – номинальная мощность двигателя, квт;

U – напряжение, В

сosφ – значение коэффициента мощности

Правильный выбор мощности прибора для изменения частоты сказывается на эффективности работы установки. При заниженной мощности частотного преобразователя производительность оборудования будет невысокой. Длительные перегрузки при работе могут привести к поломке преобразователя частоты.

При завышенной мощности частотного преобразователя и скачках напряжения или перегрузке не сработает защита электродвигателя, что приведёт к его повреждению. U

Мощность частотника должна быть больше номинальной мощности соответствующего двигателя на 15%.

Частотники для двигателя мощностью около 3 КВт являются наиболее распространёнными ввиду компактности, относительно невысокой цены, простоты установки и обслуживания

Собирать вручную частотники для двигателей мощностью 3 КВт и больше нет смысла - они будут довольно дорогими по цене и не всегда обеспечивать необходимую точность в работе.

Для двигателей мощностью 3 КВт преобразователи частоты находят применение:

  • в системах вентиляции для контроля скорости вращения вентилятора;
  • для одновременности работы принимающего и подающего конвейеров;
  • для подачи сырья с контролем его объёма;
  • для управления несколькими насосами;
  • для контроля работы погружным насосом;
  • для регулировки скорости подачи сырья в дробилках.

Частотники для двигателей большей мощности отличаются величиной максимальной выходной частоты, наличием фильтра электромагнитной совместимости (ЕМС), видом режима управления.

Например, у частотного привода для электродвигателя мощностью 15 КВт максимальная выходная частота меньше, нежели у преобразователя для двигателя мощностью 3 КВт. ЕМС фильтр для такого двигателя не предусмотрен. Режим управления только скалярный.

Частотный преобразователь применяется вкупе с асинхронным двигателем, преобразуя в автоматическом режиме частоту переменного тока к требуемым параметрам. Таким образом прибор контролирует скорость и момент электродвигателей в непрерывном процессе. Используя электротехническое устройство, можно не только полностью автоматизировать производственные процессы, но и добиться существенной экономии электроэнергии – до 50%.

Современные преобразователи частоты

Рынок электротехнического оборудования представлен частотными преобразователями широкого спектра применения. Устройства могут быть как небольшой мощности, так и высоковольтными агрегатами. Современное оборудование обеспечивает непрерывное управления процессом в системах с асинхронными и синхронными двигателями.

Устройства управления частотой нашли широкое применение практически во всех отраслях промышленности и транспорта. Основная доля всей электроэнергии, производимой в мире, используется для работы электрических двигателей, а функция управления их работой возложена на частотные преобразователи.

Современные частотники применяются в качестве средств управления в следующих системах и оборудовании:

· конвейерные механизмы;

· подъемное оборудования (краны, лифты);

· насосы и системы очистки воды;

· станки промышленного назначения;

· вентиляторы.

Правильный выбор устройства по заранее заданным критериям позволит обеспечить непрерывную и стабильную работу привода и сократить затраты на электроэнергию.

Разновидности частотных преобразователей

В зависимости от условий эксплуатации частотник должен иметь соответствующие технические характеристики и должный уровень защиты. Так, в простейшем случае прибор со степенью защиты IP 20 имеет стандартный корпус, надежно защищающий от влаги и пыли. Химическая и горнодобывающая промышленность требует использование устройств со степенью защиты IP 54 и IP 65. Модульная архитектура частотных преобразователей позволяет настроить прибор под индивидуальные условия и воспользоваться дополнительными опциями.

Для асинхронных электродвигателей



Асинхронные силовые агрегаты по степени использования в промышленности и быту занимают лидирующие позиции. Ввиду конструктивных особенностей эти приводы имеют свои недостатки, для устранения которых и было, на самом деле, создано устройство управления скоростью. Правильно подобранный контролер частоты позволяет снизить пусковой ток почти на 80% и добиться плавного регулирования процесса вращения ротора.

Для вентиляторов



Частотный преобразователь в вентиляционных системах имеет первоочередную значимость. Благодаря ему изменение скорости и частоты вращения вентилятора производится мягко и непрерывно. Стабильная и автоматическая регулировка работы оборудования настраивается на основании заранее заданных параметров, куда обычно входят температура и влажность воздуха, концентрация сторонних веществ и др. Существует опция для настройки автоматического включения/отключения системы или ее отдельных узлов.

Частотные преобразователи для насоса (оборудования)



Основным рабочим элементом современных насосов является электродвигатель, работа которого регулируется посредством рядом механических устройств. В недавнем прошлом такими механизмами выступала запорно-регулирующая арматура (вентили, задвижки, затворы). В современных насосных системах регулировка потока жидкости осуществляется с помощью частотных преобразователей. На сегодня частотные преобразователи могут работать в паре с насосом точно так же как и электродвигателями, что в свою очередь, может продлить срок эксплуатации насосного оборудования в несколько раз.

Возможности преобразователя частоты

Функциональные возможности современных частотников существенно расширены и позволяют автоматизировать работу электроприводов даже в самых сложных условиях.

Работа при нестабильном напряжении

Не все электрические сети могут обеспечить подключенное оборудование стабильным питанием. В идеале, современные преобразователи правильно выполняют свои функции в диапазоне напряжения питающей цепи 380-460 В, допустимое отклонение – 10%. Модели частотников, представленные на странице каталог позволяют сохранить работоспособность электродвигателя посредством автоматического перезапуска после кратковременного отключения (просадки) питания с плавным изменением скорости и момента мотора.

Работа на резонансных частотах

Собственная резонансная частота некоторых механизмов может вызывать недопустимые вибрации, часто являющиеся причиной выхода системы управления из строя. Благодаря функции исключения недопустимых частот работа частотника становится безопасной, а сам механизм защищен от возможной поломки.

Сетевой обмен

Для совместной работы электродвигателя и системы автоматического управления используются различные протоколы передачи данных. Наибольшее распространение получил протокол связи Modbus с интерфейсом RS-485, однако в зависимости от используемого оборудования вопрос об использовании того или иного протокола уточняется для каждого конкретного случая.

Оптимальный выбор преобразователя частоты сводится к соответствию его функциональности техническим характеристикам электродвигателя. На сайте компании «ЭНЕРГОПУСК» приведен огромный ассортимент электронных регулирующих устройств, где можно остановится на оптимальном выборе электротехнического прибора исходя из экономической целесообразности покупки и эксплуатации.

Мощность частотного преобразователя

Мощность является одним из наиболее основных параметров электропривода. При выборе частотника, в первую очередь, следует определится с его нагрузочной способностью. В соответствии с имеющейся номинальной мощностью двигателя выбирается ЧП, рассчитанный на такую же мощность. И такой выбор будет являться правильным при условии, что нагрузка на валу не будет динамично изменяться, ток не будет значительно превышать номинальное установленное значение, как для данного двигателя, так и устройства распределения частоты. Поэтому более корректным было бы производить выбор по максимальному значению тока потребляемого электродвигателем от ЧП с учетом перегрузочной способности последнего. Обычно способность к перегрузкам указывается в процентах от номинального тока совместно с максимально допустимым временем действия данной перегрузки до активации непосредственной защиты. Таким образом, для правильного выбора нужно знать характер перегрузок именно вашего механизма, в частности: каков уровень перегрузок, какова их длительность и как часто они появляются.

Напряжение сети для частотного преобразователя


Так же важным является вопрос о питающем напряжении. Наиболее распространенный случай - это питание от трехфазной промышленной сети 380В, но возможны варианты, когда привод рассчитан на работу от однофазной сети 220-240В. Как правило, последний ограничивается рядом мощностей до 3,7кВт. Существуют варианты и высоковольтного привода, дающие возможность управлять более мощными двигателями, с мощностями измеряющимися уже в МВт, при относительно меньших значения тока.

Каждый из вариантов применим для различного рода решений, и зависит как от возможностей электроснабжения, так и от ряда возможностей обусловленных применением соответствующего привода.

Диапазон регулирования частотного преобразователя

Если скорость не будет падать ниже 10% от номинальной, то подойдет практически любой частотник, но если нужно снижать скорость и далее, обеспечивая при этом номинальный момент на валу, нужно убедиться в способности частотного преобразователя двигателя обеспечить работу на частотах, близких к нулю. Кроме того, с диапазоном регулирования частоты вращения связан еще один вопрос, который требует решения, - охлаждение электродвигателя. Обычно асинхронный эл.двигатель (с самовентиляцией) охлаждается вентилятором, закрепленным на его валу, поэтому при снижении скорости эффективность охлаждения резко падает.

Некоторые электронные устройство для изменения частоты снабжены функцией контроля теплового режима с помощью обратной связи через датчик температуры установленного на самом двигателе. Существуют и другие варианты решения данного вопроса, но уже без использования данного устройства.

Необходимость режима торможения преобразователя частоты

Торможение выбегом (инерционное торможение), аналогично отключению двигателя от питающей сети, при этом процесс может занять продолжительное время. Особенно если это высокоинерционные механизмы. С помощью частотного распределения электроимпульса можно осуществить остановку или торможение с переходом на более низкую скорость работы за более короткий промежуток времени. Возможно несколько вариантов:

  • отдать в сеть электроэнергию (режим рекуперативного торможения);
  • выполнить остановку подачей на обмотки статора напряжения более низкой частоты или постоянного напряжения, тогда избыток запасенной кинетической энергии выделится в виде тепла через радиаторы преобразовывающие электроэнергию и сам двигатель (режим торможения постоянным током);
  • выполнить остановку или торможение с использованием тормозного прерывателя и комплекта тормозных резисторов



Целесообразность применения того или иного метода рассматривается в основном с точки зрения экономической выгоды. Так рекуперация в сеть более выгодна в плане экономии электроэнергии, привод с использованием тормозного сопротивления - более дешевое техническое решение, торможение двигателем вообще не требует дополнительных затрат, но в свою очередь возможно только при малых мощностях.

Преобразователи частоты как способ управления электродвигателем

Некоторые механизмы могут управляться от задающего сигнала на условиях плавного изменения оборотов, а в некоторых случаях требуется работа на фиксированных скоростях. Причем, и в том и другом случае возможно управление, как с пульта управления ЧП, так и с использования клемм цепей управления электронного устройства плавно понижая или повышая ток, кнопок, переключателей и потенциометров.


При реализации последнего варианта необходимо убедиться в достаточном количестве требуемых входов. В случае использования внешнего управляющего устройства (контроллера, логического реле и т.д.), необходимо убедиться в согласовании по техническим параметрам. Обычно это токовые или вольтовый сигналы с диапазонами 0%u202620мА, 4%u202620мА и 0%u202610В соответственно. Если управление электропривода происходит по сети, то необходимы наличие соответствующего интерфейса и поддержка соответствующего протокола передачи данных.

Управление двигателем может проходить автоматически, для этого необходимо наличие ПИД-регулятора и возможность организовать обратную связь от датчика контролируемого параметра

Индикация параметров электропривода

В основном любой преобразователь изменения частоты имеет панель с дисплеем и необходимыми органами управления для проведения пуско-наладки и управления. Этот же дисплей в процессе функционирования возможно использовать для отображения каких-либо параметров.

Дисплеи могут отличаться количеством строчек, а значит, информативностью, типом самого дисплея (семисегментный индикаторный либо жидкокристаллический). В случае невозможности во время работы наблюдать параметры на дисплее самого эл.привода, используя аналоговые и дискретные (релейные, транзисторные) выходы, можно вывести необходимую информацию на пульт дистанционного управления.

Помимо индикации параметров (состояния «работа», «авария», «режим торможения», значение тока нагрузки, обороты двигателя, частота и напряжение питающей сети и др.) некоторые устройства имеют возможность формировать сигналы управления посредством тех же аналоговых и дискретных выходов, тем самым реализовывать более сложные системы управления.

Функции защиты

Кроме функций управления на электронное устройство изменения частоты обычно возлагаются функции защиты. Как правило, основным набором являются:

  • ограничение тока при пуске, при продолжительной работе, при остановке и коротком замыкании;
  • защита от перенапряжения и пониженного напряжения;
  • контроль температуры двигателя;
  • защита от перегрева радиатора;
  • защита выходных IGBT.

Монтаж и установка частотного преобразователя

Важным моментом является выбор предполагаемого места установки частотного преобразователя, а отсюда условий его эксплуатации:

  • ограничение тока при пуске, при продолжительной работе, при остановке и коротком замыкании
  • диапазон рабочих температур
  • влажность
  • высотность
  • вибрации
  • степень защиты (IP)

Компактность в некоторых случаях является решающим фактором на этапе выбора. Каковы габариты устанавливаемого привода и способ установки? Возможно ли радиаторы силовой части ЧП вынести на тыльную часть, обеспечив при меньших габаритах шкафа достаточную вентиляцию?

Информация об условиях окружающей среды является неотъемлемой частью технических характеристик, при выборе частотного преобразователя, и не соблюдение их при установке может привести к выходу его из строя. В процессе установки возникает множество вопросов, но это одни из первых с которыми приходится столкнуться.

Функциональные возможности

Современные электроприводы имеют множество функциональных возможностей. Перечислим часто встречающиеся по мере их важности.

Работа при нестабильном питании .

Это актуальный параметр особенно при использовании в России. Отсюда вопрос: «каков допустимый диапазон питающего напряжения?». Хорошим диапазоном напряжения питающей сети для современных частотников является 380-460 В с отклонением ±10%. Следует уточнить каковы действия частотного преобразователя при просадке или полном отключении питания на короткое или очень короткое время?

Возможно ли сохранение работоспособности с пропорциональным изменением скорости, момента двигателя, автоматический перезапуск после восстановления питания, подхват скорости работающего двигателя при повторном пуске после пропадания питания и т.д. Если имеющиеся функциональные возможности обеспечивают допустимый режим работы механизма с сохранением его работоспособного состояния, то можно считать, что вопрос о нестабильном питании для вас снят, в противном случае стоит либо решить вопрос с электроснабжением, либо задуматься о выборе другого оборудования.

Исключение работы на резонансных частотах .

Некоторые механизмы имеют собственные резонансные частоты при работе на которых наблюдаются недопустимые вибрации, что может привести к поломке оборудования. В таких случаях функция исключения недопустимых частот в преобразователе позволит обезопасить механизм от его преждевременного выхода из строя.

Сетевой обмен .

Обычно требуется либо включить привод в систему автоматического управления, либо предусмотреть перспективу такого использования систем изменения частоты электрического тока в будущем. Для этого необходимо разобраться со стандартом и протоколом связи.

В настоящее время существует большое их разнообразие, позволяющее сделать работу в режиме САУ наиболее оптимальной. Отличаться они могут удаленностью, количеством связываемых объектов и помехозащищенностью.

Наиболее распространенный вариант %u2013 это интерфейс RS-485 и протокол передачи данных Modbus, но для согласования работы в составе системы автоматического управления этот вопрос следует более подробно уточнить у поставщика либо у производителя.

Автоматическая настройка .

На сегодняшний день выбор электроприводов довольно велик, но еще встречаются простейшие модели в которых не производится настройка под параметры двигателя, а точнее его обмотки. В более поздних моделях требуется вводить ряд дополнительных справочных данных.

Частотные преобразователи имеют возможность провести так называемый идентификационный пуск (режим автонастройки), при котором еще до пуска, либо уже у вращающегося двигателя параметры обмоток определяются автоматически. Если на выбираемом приводе предполагается реализовать прецизионную систему управления, то этот вопрос является особенно актуальным.

Принцип управления ЧП .

В наиболее распространенном частотно-регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное управление.

Скалярное управление строится на принципе постоянства отношения выходного напряжения частотного преобразователя к его выходной частоте. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента электродвигателя текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность электромотора.

Важным достоинством скалярного метода является возможность одновременного управления группой электрической машиной. Скалярное управление применимо для большинства практических случаев использования частотного электропривода с диапазоном регулирования частоты вращения до 1:40 .

Векторное управление, в свою очередь, позволяет существенно повысить точность поддержания выходной частоты, точность регулирования по скорости, а также точность поддержания момента. Так же отличительной особенностью векторного регулирования является возможность управлять моментом на валу мотора при его работе на частотах близких к нулю. Возможность использования нескольких наборов параметров. Последнее поколение преобразователей имеет функциональную возможность выбирать различные комбинации настроек для нескольких режимов работы одного и того же электромеханического преобразователя или для нескольких, имеющих различные технические параметры.

Количество функций описанных выше - малая часть из их огромного множества, исчисляемого уже сотнями в оборудовании последнего поколения. Выбирать необходимые нужно исходя из тех требований, которые диктуют предполагаемые области их применения. Вряд ли этап подбора частотного преобразователя ограничивается решением выше указанных вопросов, но это те из них с которыми приходится столкнуться на первоначальном этапе.

Выбор частотника, как высокотехнологичного оборудования, сам по себе не прост и в конечном итоге сводится к экономической целесообразности приобретения и использования. Отсюда, не стоит слишком завышать требования и тем самым переплачивать за неиспользуемые опции, и в тоже время отказываться от необходимых, в надежде сделать механизм, привод и систему в целом работоспособными.

Сегодня купить преобразователь частоты достаточно просто. Зачастую, мы это делаем с помощью поисковых систем или звоним уже проверенным поставщикам. При этом нужно помнить, что правильный выбор оборудования - одна из самых важных задач для любого хозяйственного объекта! Учитывая все важные критерии и характеристики, вы приобретаете привод, будет работать с максимальной эффективностью.

  1. Мощность преобразователя частоты. Выбор необходимо делать с учетом номинального значения приводного электродвигателя с учетом перегрузочной способности. Для этого, необходимо знать тип перегрузок управляемого механизма: величину перегрузок, их длительность и частоту возникновения.
  2. Напряжение сети . Наиболее часто мы используем низковольтную трехфазную питающую сеть 380 В. Но бывают случаи, когда электротехническое оборудование используют на 660, 690 В, 3 кВ, 6 кВ и 10 кВ.
  3. Регулирование частоты. Может быть установлен практически любой частотник, в случаях, если скорость снижается до 50 % от номинальной. Но если, необходимо обеспечить надежный рабочий процесс при близких к нулю частотах, тогда нужен специальный электродвигатель с возможностью работы при таких параметрах. Здесь, также важно отметить, способ охлаждения двигателя. В этих случаях важна защита электродвигателя по температуре.
  4. Способ управления двигателем. Управление рабочим процессом возможно как через местный пульт, так и дистанционный. Также, здесь должны учитываться передача данных по различным протоколам, которые позволят внедрить систему АСУ.
  5. Функциональные возможности. Частотный преобразователь должен иметь тот набор функций, который необходим для сочетания оптимальной цены и выполнения поставленных задач. Здесь важна ориентация для работы частотника: управление стандартными узлами (насосами, вентиляторами) или специальными (краны, рольганы, многодвигательные системы).
  6. Конструктивное исполнение. Исполнение частотного преобразователя должно соответствовать эксплуатируемым условиям. В этих случаях возможны исполнения для работы в агрессивных средах, влажных, пыльных и др.


Выбирая частотный преобразователь для потребностей предприятия, вы можете знать точную модель нужного оборудования и без каких-либо сложностей заказать его через интернет. Но мы, как надежный производитель частотных преобразователей частоты, рекомендуем обращаться за подбором частотников к профессионалам. Широкий модельный ряд преобразователей частоты «Триол» позволяет подобрать модель необходимой мощности с широким набором функциональных возможностей. На складе компании есть приводы стандартной комплектации, а также изготавливается оборудование под ваши индивидуальные требования. Эксперты в области электротехнического оборудования от Корпорации «Триол» помогут подобрать, доставить, установить и в дальнейшем обслуживать частотные преобразователи.

Частотный преобразователь применяется вкупе с асинхронным двигателем, преобразуя в автоматическом режиме частоту переменного тока к требуемым параметрам. Таким образом прибор контролирует скорость и момент электродвигателей в непрерывном процессе. Используя электротехническое устройство, можно не только полностью автоматизировать производственные процессы, но и добиться существенной экономии электроэнергии – до 50%.

Современные преобразователи частоты

Рынок электротехнического оборудования представлен частотными преобразователями широкого спектра применения. Устройства могут быть как небольшой мощности, так и высоковольтными агрегатами. Современное оборудование обеспечивает непрерывное управления процессом в системах с асинхронными и синхронными двигателями.

Устройства управления частотой нашли широкое применение практически во всех отраслях промышленности и транспорта. Основная доля всей электроэнергии, производимой в мире, используется для работы электрических двигателей, а функция управления их работой возложена на частотные преобразователи.

Современные частотники применяются в качестве средств управления в следующих системах и оборудовании:

· конвейерные механизмы;

· подъемное оборудования (краны, лифты);

· насосы и системы очистки воды;

· станки промышленного назначения;

· вентиляторы.

Правильный выбор устройства по заранее заданным критериям позволит обеспечить непрерывную и стабильную работу привода и сократить затраты на электроэнергию.

Разновидности частотных преобразователей

В зависимости от условий эксплуатации частотник должен иметь соответствующие технические характеристики и должный уровень защиты. Так, в простейшем случае прибор со степенью защиты IP 20 имеет стандартный корпус, надежно защищающий от влаги и пыли. Химическая и горнодобывающая промышленность требует использование устройств со степенью защиты IP 54 и IP 65. Модульная архитектура частотных преобразователей позволяет настроить прибор под индивидуальные условия и воспользоваться дополнительными опциями.

Для асинхронных электродвигателей



Асинхронные силовые агрегаты по степени использования в промышленности и быту занимают лидирующие позиции. Ввиду конструктивных особенностей эти приводы имеют свои недостатки, для устранения которых и было, на самом деле, создано устройство управления скоростью. Правильно подобранный контролер частоты позволяет снизить пусковой ток почти на 80% и добиться плавного регулирования процесса вращения ротора.

Для вентиляторов



Частотный преобразователь в вентиляционных системах имеет первоочередную значимость. Благодаря ему изменение скорости и частоты вращения вентилятора производится мягко и непрерывно. Стабильная и автоматическая регулировка работы оборудования настраивается на основании заранее заданных параметров, куда обычно входят температура и влажность воздуха, концентрация сторонних веществ и др. Существует опция для настройки автоматического включения/отключения системы или ее отдельных узлов.

Частотные преобразователи для насоса (оборудования)



Основным рабочим элементом современных насосов является электродвигатель, работа которого регулируется посредством рядом механических устройств. В недавнем прошлом такими механизмами выступала запорно-регулирующая арматура (вентили, задвижки, затворы). В современных насосных системах регулировка потока жидкости осуществляется с помощью частотных преобразователей. На сегодня частотные преобразователи могут работать в паре с насосом точно так же как и электродвигателями, что в свою очередь, может продлить срок эксплуатации насосного оборудования в несколько раз.

Возможности преобразователя частоты

Функциональные возможности современных частотников существенно расширены и позволяют автоматизировать работу электроприводов даже в самых сложных условиях.

Работа при нестабильном напряжении

Не все электрические сети могут обеспечить подключенное оборудование стабильным питанием. В идеале, современные преобразователи правильно выполняют свои функции в диапазоне напряжения питающей цепи 380-460 В, допустимое отклонение – 10%. Модели частотников, представленные на странице позволяют сохранить работоспособность электродвигателя посредством автоматического перезапуска после кратковременного отключения (просадки) питания с плавным изменением скорости и момента мотора.

Работа на резонансных частотах

Собственная резонансная частота некоторых механизмов может вызывать недопустимые вибрации, часто являющиеся причиной выхода системы управления из строя. Благодаря функции исключения недопустимых частот работа частотника становится безопасной, а сам механизм защищен от возможной поломки.

Сетевой обмен

Для совместной работы электродвигателя и системы автоматического управления используются различные протоколы передачи данных. Наибольшее распространение получил протокол связи Modbus с интерфейсом RS-485, однако в зависимости от используемого оборудования вопрос об использовании того или иного протокола уточняется для каждого конкретного случая.

Оптимальный выбор преобразователя частоты сводится к соответствию его функциональности техническим характеристикам электродвигателя. На сайте компании «ЭНЕРГОПУСК» приведен огромный ассортимент электронных регулирующих устройств, где можно остановится на оптимальном выборе электротехнического прибора исходя из экономической целесообразности покупки и эксплуатации.

Мощность частотного преобразователя

Мощность является одним из наиболее основных параметров электропривода. При выборе частотника, в первую очередь, следует определится с его нагрузочной способностью. В соответствии с имеющейся номинальной мощностью двигателя выбирается ЧП, рассчитанный на такую же мощность. И такой выбор будет являться правильным при условии, что нагрузка на валу не будет динамично изменяться, ток не будет значительно превышать номинальное установленное значение, как для данного двигателя, так и устройства распределения частоты. Поэтому более корректным было бы производить выбор по максимальному значению тока потребляемого от ЧП с учетом перегрузочной способности последнего. Обычно способность к перегрузкам указывается в процентах от номинального тока совместно с максимально допустимым временем действия данной перегрузки до активации непосредственной защиты. Таким образом, для правильного выбора нужно знать характер перегрузок именно вашего механизма, в частности: каков уровень перегрузок, какова их длительность и как часто они появляются.

Напряжение сети для частотного преобразователя


Так же важным является вопрос о питающем напряжении. Наиболее распространенный случай - это питание от трехфазной промышленной сети 380В, но возможны варианты, когда привод рассчитан на работу от однофазной сети 220-240В. Как правило, последний ограничивается рядом мощностей до 3,7кВт. Существуют варианты и высоковольтного привода, дающие возможность управлять более мощными двигателями, с мощностями измеряющимися уже в МВт, при относительно меньших значения тока.

Каждый из вариантов применим для различного рода решений, и зависит как от возможностей электроснабжения, так и от ряда возможностей обусловленных применением соответствующего привода.

Диапазон регулирования частотного преобразователя

Если скорость не будет падать ниже 10% от номинальной, то подойдет практически любой частотник, но если нужно снижать скорость и далее, обеспечивая при этом номинальный момент на валу, нужно убедиться в способности частотного преобразователя двигателя обеспечить работу на частотах, близких к нулю. Кроме того, с диапазоном регулирования частоты вращения связан еще один вопрос, который требует решения, - охлаждение электродвигателя. Обычно асинхронный эл.двигатель (с самовентиляцией) охлаждается вентилятором, закрепленным на его валу, поэтому при снижении скорости эффективность охлаждения резко падает.

Некоторые электронные устройство для изменения частоты снабжены функцией контроля теплового режима с помощью обратной связи через датчик температуры установленного на самом двигателе. Существуют и другие варианты решения данного вопроса, но уже без использования данного устройства.

Необходимость режима торможения преобразователя частоты

Торможение выбегом (инерционное торможение), аналогично отключению двигателя от питающей сети, при этом процесс может занять продолжительное время. Особенно если это высокоинерционные механизмы. С помощью частотного распределения электроимпульса можно осуществить остановку или торможение с переходом на более низкую скорость работы за более короткий промежуток времени. Возможно несколько вариантов:

  • отдать в сеть электроэнергию (режим рекуперативного торможения);
  • выполнить остановку подачей на обмотки статора напряжения более низкой частоты или постоянного напряжения, тогда избыток запасенной кинетической энергии выделится в виде тепла через радиаторы преобразовывающие электроэнергию и сам двигатель (режим торможения постоянным током);
  • выполнить остановку или торможение с использованием тормозного прерывателя и комплекта тормозных резисторов



Целесообразность применения того или иного метода рассматривается в основном с точки зрения экономической выгоды. Так рекуперация в сеть более выгодна в плане экономии электроэнергии, привод с использованием тормозного сопротивления - более дешевое техническое решение, торможение двигателем вообще не требует дополнительных затрат, но в свою очередь возможно только при малых мощностях.

Преобразователи частоты как способ управления электродвигателем

Некоторые механизмы могут управляться от задающего сигнала на условиях плавного изменения оборотов, а в некоторых случаях требуется работа на фиксированных скоростях. Причем, и в том и другом случае возможно управление, как с пульта управления ЧП, так и с использования клемм цепей управления электронного устройства плавно понижая или повышая ток, кнопок, переключателей и потенциометров.


При реализации последнего варианта необходимо убедиться в достаточном количестве требуемых входов. В случае использования внешнего управляющего устройства (контроллера, логического реле и т.д.), необходимо убедиться в согласовании по техническим параметрам. Обычно это токовые или вольтовый сигналы с диапазонами 0%u202620мА, 4%u202620мА и 0%u202610В соответственно. Если управление электропривода происходит по сети, то необходимы наличие соответствующего интерфейса и поддержка соответствующего протокола передачи данных.

Управление двигателем может проходить автоматически, для этого необходимо наличие ПИД-регулятора и возможность организовать обратную связь от датчика контролируемого параметра

Индикация параметров электропривода

В основном любой преобразователь изменения частоты имеет панель с дисплеем и необходимыми органами управления для проведения пуско-наладки и управления. Этот же дисплей в процессе функционирования возможно использовать для отображения каких-либо параметров.

Дисплеи могут отличаться количеством строчек, а значит, информативностью, типом самого дисплея (семисегментный индикаторный либо жидкокристаллический). В случае невозможности во время работы наблюдать параметры на дисплее самого эл.привода, используя аналоговые и дискретные (релейные, транзисторные) выходы, можно вывести необходимую информацию на пульт дистанционного управления.

Помимо индикации параметров (состояния «работа», «авария», «режим торможения», значение тока нагрузки, обороты двигателя, частота и напряжение питающей сети и др.) некоторые устройства имеют возможность формировать сигналы управления посредством тех же аналоговых и дискретных выходов, тем самым реализовывать более сложные системы управления.

Функции защиты

Кроме функций управления на электронное устройство изменения частоты обычно возлагаются функции защиты. Как правило, основным набором являются:

  • ограничение тока при пуске, при продолжительной работе, при остановке и коротком замыкании;
  • защита от перенапряжения и пониженного напряжения;
  • контроль температуры двигателя;
  • защита от перегрева радиатора;
  • защита выходных IGBT.

Монтаж и установка частотного преобразователя

Важным моментом является выбор предполагаемого места установки частотного преобразователя, а отсюда условий его эксплуатации:

  • ограничение тока при пуске, при продолжительной работе, при остановке и коротком замыкании
  • диапазон рабочих температур
  • влажность
  • высотность
  • вибрации
  • степень защиты (IP)

Компактность в некоторых случаях является решающим фактором на этапе выбора. Каковы габариты устанавливаемого привода и способ установки? Возможно ли радиаторы силовой части ЧП вынести на тыльную часть, обеспечив при меньших габаритах шкафа достаточную вентиляцию?

Информация об условиях окружающей среды является неотъемлемой частью технических характеристик, при выборе частотного преобразователя, и не соблюдение их при установке может привести к выходу его из строя. В процессе установки возникает множество вопросов, но это одни из первых с которыми приходится столкнуться.

Функциональные возможности

Современные электроприводы имеют множество функциональных возможностей. Перечислим часто встречающиеся по мере их важности.

Работа при нестабильном питании .

Это актуальный параметр особенно при использовании в России. Отсюда вопрос: «каков допустимый диапазон питающего напряжения?». Хорошим диапазоном напряжения питающей сети для современных частотников является 380-460 В с отклонением ±10%. Следует уточнить каковы действия частотного преобразователя при просадке или полном отключении питания на короткое или очень короткое время?

Возможно ли сохранение работоспособности с пропорциональным изменением скорости, момента двигателя, автоматический перезапуск после восстановления питания, подхват скорости работающего двигателя при повторном пуске после пропадания питания и т.д. Если имеющиеся функциональные возможности обеспечивают допустимый режим работы механизма с сохранением его работоспособного состояния, то можно считать, что вопрос о нестабильном питании для вас снят, в противном случае стоит либо решить вопрос с электроснабжением, либо задуматься о выборе другого оборудования.

Исключение работы на резонансных частотах .

Некоторые механизмы имеют собственные резонансные частоты при работе на которых наблюдаются недопустимые вибрации, что может привести к поломке оборудования. В таких случаях функция исключения недопустимых частот в преобразователе позволит обезопасить механизм от его преждевременного выхода из строя.

Сетевой обмен .

Обычно требуется либо включить привод в систему автоматического управления, либо предусмотреть перспективу такого использования систем изменения частоты электрического тока в будущем. Для этого необходимо разобраться со стандартом и протоколом связи.

В настоящее время существует большое их разнообразие, позволяющее сделать работу в режиме САУ наиболее оптимальной. Отличаться они могут удаленностью, количеством связываемых объектов и помехозащищенностью.

Наиболее распространенный вариант %u2013 это интерфейс RS-485 и протокол передачи данных Modbus, но для согласования работы в составе системы автоматического управления этот вопрос следует более подробно уточнить у поставщика либо у производителя.

Автоматическая настройка .

На сегодняшний день выбор электроприводов довольно велик, но еще встречаются простейшие модели в которых не производится настройка под параметры двигателя, а точнее его обмотки. В более поздних моделях требуется вводить ряд дополнительных справочных данных.

Частотные преобразователи имеют возможность провести так называемый идентификационный пуск (режим автонастройки), при котором еще до пуска, либо уже у вращающегося двигателя параметры обмоток определяются автоматически. Если на выбираемом приводе предполагается реализовать прецизионную систему управления, то этот вопрос является особенно актуальным.

Принцип управления ЧП .

В наиболее распространенном частотно-регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное управление.

Скалярное управление строится на принципе постоянства отношения выходного напряжения частотного преобразователя к его выходной частоте. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента электродвигателя текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность электромотора.

Важным достоинством скалярного метода является возможность одновременного управления группой электрической машиной. Скалярное управление применимо для большинства практических случаев использования частотного электропривода с диапазоном регулирования частоты вращения до 1:40 .

Векторное управление, в свою очередь, позволяет существенно повысить точность поддержания выходной частоты, точность регулирования по скорости, а также точность поддержания момента. Так же отличительной особенностью векторного регулирования является возможность управлять моментом на валу мотора при его работе на частотах близких к нулю. Возможность использования нескольких наборов параметров. Последнее поколение преобразователей имеет функциональную возможность выбирать различные комбинации настроек для нескольких режимов работы одного и того же электромеханического преобразователя или для нескольких, имеющих различные технические параметры.

Количество функций описанных выше - малая часть из их огромного множества, исчисляемого уже сотнями в оборудовании последнего поколения. Выбирать необходимые нужно исходя из тех требований, которые диктуют предполагаемые области их применения. Вряд ли этап подбора частотного преобразователя ограничивается решением выше указанных вопросов, но это те из них с которыми приходится столкнуться на первоначальном этапе.

Выбор частотника, как высокотехнологичного оборудования, сам по себе не прост и в конечном итоге сводится к экономической целесообразности приобретения и использования. Отсюда, не стоит слишком завышать требования и тем самым переплачивать за неиспользуемые опции, и в тоже время отказываться от необходимых, в надежде сделать механизм, привод и систему в целом работоспособными.

← Вернуться

×
Вступай в сообщество «kalipsosanteh.ru»!
ВКонтакте:
Я уже подписан на сообщество «kalipsosanteh.ru»